R5.5000-00

Identification and quantification of glucosinolates in local Brassica species/varieties and study of the effect of cooking methods on *in vitro* accessibility of glucosinolates products

by

PWNM Colombagama

M.Phil

2009

203058

Identification and quantification of glucosinolates in local Brassica species/varieties and study of the effect of cooking methods on *in vitro* accessibility of glucosinolates products.

PWNM Colombagama, KKDS Ranaweera, UG Chandrika

ABSTRACT

Glucosinolates are a large group of plant secondary metabolites. They are common in all economically important species of Brassicca vegetables. Reduced risk of certain cancers is found to associate with consumption of Brassicaceae family vegetables which contain glucosinolates. In the present study, four major glucosinolates (sinigrin, glucoraphanin, glucotropaeolin and gluconasturtiin) were identified in the tested samples and quantified using High Performance Liquid Chromatography (HPLC) combined with photodiode-array detection (PDA). Accordingly, five most locally popular Brassica species namely, broccoli (Brassica oleracea var. italica), white cabbage (Brassica oleracea var. capitata), red cabbage (Brassica oleracea var. capitata), radish (Raphanus sativus) and cauliflower (Brassica oleracea var. botrytis) were analysed for their glucosinolates profile in raw, cooked and in vitro digested samples. The stability of glucosinolates was evaluated in selected vegetables under different cooking methods and *in vitro* gastrointestinal digestion methods. It was observed that frying is the best method to preserve glucosinoltes in vegetables, compared with soups or vegetables cooked with coconut milk. It was found that the in vitro gastric digestion of vegetable varieties causes high losses in individual glucosinoltes (~70%). After the pancreatin-bile salts mediated digestion, an additional decrease in individual glucosinoltes was observed (~20%). When the Brassicca vegetables were subjected to complete in vitro gastro intestinal digestion, the amount of glucosinolates retained were approximately 10%. This high percentage of loss during the digestion process could be due to the degradation of glucosinolates either to nitriles or to secondary reaction products depending on the gastro intestinal pH conditions.

х

TABLE OF CONTENTS

Content	Page
TABLE OF CONTENTS	i
LIST OF TABLES	iv
LIST OF FIGURES	vi
ACKNOWLEDGEMENT	ix
ABSTRACT	Х
CHAPTER 01	
INTRODUCTION	1
1.1 General Introduction	1
1.2 Importance of glucosinolate	2
1.3 Source of glucosinolates	3
1.4 Measurements of glucosinolates	3
1.5 Justification for the study	4
1.6 Scope of study	4
CHAPTER 02	
LITERATURE REVIEW	6
2.1 Glucosinolates	6
2.1.1 Chemical properties of glucosinolates	6
2.1.2 Biological activity of glucosinolates	7
2.1.3 Classification of glucosinolates	7
2.1.4 Distribution of glucosinolates among plants	7
2.2 Biosynthesis of Glucosinolates	11
2.3 Degradation of glucosinolates by 'Glucosinolate – myrosinase' system	15
2.4 Glucosinolates and Health	17

2.5 Effect of cooking on glucosinolates	20
2.6 Changes of Glucosinolates after ingestion	22
2.7 Methods of Identification and quantification of glucosinolates	23
2.8 HPLC/UV analysis of glucosinolates	26
CHAPTER 03	
MATERIALS AND METHODOLOGY	28
3.1 Chemicals and reagents	28
3.2 Preparation of heating block combined with nitrogen flushing unit	28
3.2 Vegetable samples	29
3.3 Sample Preparation and Extraction Methods for Analyses of Glucosinolate- Containing Plants	30
3.3.1 Sample Preparation	30
3.3.2 Sample Extraction	30
3.3.3 Post-Extraction Processing	31
3.4 HPLC analysis of Glucosinolates	31
3.4.1 Determination of better gradient for HPLC analysis of glucosinolates	31
3.4.2 HPLC columns used for glucosinolate analysis	32
3.4.3 Ion-Pair HPLC analysis conditions	32
3.4.4 Preparation of individual intact glucosinolate standard solutions	33
3.4.5 Preparation of glucosinolate standard mixture solutions for calibration	33
Curve	
3.5 Preparation of samples for cooking	33
3.5.1 Vegetables samples	33
3.5.2 Different cooking methods	34
3.6 <i>In vitro</i> digestion of cabbage samples subjected to different cooking methods	35

CHAPTER 04

RESULTS AND DISCUSSION	37
4.1 Extraction of glucosinolates from plant tissues	37
4.2 Determination of better gradient for HPLC analysis of glucosinolates	40
4.3 Identification of glucosinolates	49
4.4 Quantitative analysis	56
4.5 Effect of Different cooking methods on glucosinolates content	62
4.6 In vitro gastrointestinal digestion	68
CHAPTER 05	
CONCLUSIONS	81
REFERANCES	90
APPENDICES.	112