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ABSTRACT 

The problem of estimating 	parameters of finite 

mixtures, is one of the oldest estimation problems. 	Due to 

the lack of a completely satisfactory solution, this problem 

still attracts a great deal of attention. Other than the 

mixtures of normal components, the most widely used 

mixture distributions are the mixtures of exponential 

components. The simplest is the mixture of two exponential 

components whose probability density function is given by, 

f(x)= pX1e -X1x  (l-p)2 2 e 	; x>O 

= 0 	 ; otherwise 

for k1 ,2 2 >0 and O<p<l. 

Mixtures of this type are frequently applied in life 

statistics and failure data. 	In this thesis, the problem of 

estimating parameters of a 	mixture of two exponential 

components is studied. 

Our first effort, the use of the method of moments, 

did not give us satisfactory solutions. The simulation study has 

shown that the resulting estimates deviated drastically from 

the actual parameters. Next,  the method of maximum likelihood 



was applied with the following optimization techniques. 

Nelder and Mead's method (unconstrained) 

Newton - Raphson method (unconstrained) 

Sequential Unconstrained Minimization 

Technique (SUMT) (constrained) 

It was found that, SUMT is suitable to find 

maximum likelihood estimates of the parameters of the 

' 	 mixture. 	When the parameters of the components of the 

mixture are well- separated and 	the mixture contains not 

more than 70% of the observations from the component 

with larger mean, then the estimates seem to be accurate 

and precise. 
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CHAPTER 1 

INTRODUCTION 

1.1 MIXTURE DISTRIBUTIONS 

In the last century, the interest focused on studying the 

statistical distributions which can be expressed as the 

superposition of component distributions. 	Such superpositions 

are termed mixture distributions. Most research studies were 

concentrated on finite mixture distributions, i.e., about the 

mixtures involving finite number of components. It is not 

surprising that the interest on infinite mixtures is so low, 

considering the fact that even the analyses of finite mixtures 

are still at the research stage. 

Density functions of finite mixture distributions have 

received increasing attention in the statistical literature recently, 

because these finite mixture distributions have been involved 

in various applied fields, such as law enforcement/criminal 

justice, traffic engineering and bio medical studies [1]. All 

these models require some statistical analysis such as 

estimating parameters and testing hypotheses, in order to have 

some value in practice. Thus, this addresses the statistical 

'4 



problem of parameter estimation from data samples. A vital 

10 

	 problem arises when data are not available for each marginal 

distribution separately, but only for the overall mixture 

distribution. 	Often such 	situations arise because, it is 

impossible to observe 	underlying variables which split the 

observations into groups and only the combined distribution 

can be studied. In these circumstances, the natural tendency 

of the statisticians is to 	estimate mixing proportions and 

parameters in the combined distributions. 	The problem of 

estimating the parameters in mixture distributions is one 

of the oldest estimation problems in the statistical 

literature. In 1894 Pearson [30], in 1906 Charlier [31], and 

in 1924 Gharlier and Wickseil [32] were some of the earlier 

authors, who considered the estimation problems of mixture 

distributions. Due to the lack of a completely satisfactory 

solution, this problem still attracts a great deal of 

attention. 

The most widely used finite mixture distributions are 

those involving normal components, since normal distributions 

often provide good approximations to the distributions of data 

in practice. The following two facts give heuristic 

justification for this. 

40 	 2 



When the sample size is large, the sampling distribution of 

the sample mean is normal, irrespective of the parent 

distribution (Central Limit Theorem). 

Any linear combination of a normal mixture is normal. 

However, there are circumstances when the normal 

distribution is inappropriate and hence it is necessary to 

concentrate on other distributions. 	In such situations, 

exponential distributions have appeared to have received much 

attention. 

Very little attention has been devoted to practical 

applications of mixtures of continuous distributions which 

are not normal or exponential. 

	

The mixtures of discrete components 	were also 

discussed in the literature. Pearson appears to be the first 

to study such distributions in detail. In 1915, he derived 

moment estimates 	for the parameters in a mixture of 

binomial 	distributions. According to the literature, extensive 

studies have taken place in the area of discrete mixtures of 

binomial and Poisson components([2] , 	[3]). 

Many studies of finite mixtures are devoted to the 

mixtures having same component distributions. 	There seem 

to be only a few applications involving mixtures, where the 



components are of different types. However, Ashton [4] 

applied such a mixture in studying the distribution of time 

gaps in road traffic flow. She used gamma distribution 

and displaced exponential distribution as the component 

distributions. 	Practical applications of mixtures of different 

types of components also seem rare in the literature. 

In the study of mixture distributions, it is assumed 

that they are identifiable. Mixtures that are not identifiable 

can not be expressed uniquely as a function of components 

and mixing proportions. Identifiability is crucial, since it is not 

possible to estimate parameters for unidentifiable mixtures [5], 

[6] and [7]. Teicher [5] has shown that the mixtures of 

exponential components are identifiable. 

1.1.1 Estimating parameters of mixture distributions 

In estimating the parameters of mixtures, there is no single 

best estimation method. Many approaches have been devised 

and some standard methods are stated below. 

1. The method of moments 

This method was introduced by K. Pearson in 1894 and 

Rider [10], Muller [33], Gargantini and Henrici [34], and 



Kabir [11] were some 	statisticians who applied this 

method for mixtures. 

2. The method of maximum likelihood 

Many statisticians applied this method in estimating the 

parameters of mixtures. Some of them were Hasseiblad 

[12], Day [35], Oppenheimer [13], Duda and Hart [36], 

and Hosmer [37]. 

The method of inversion and error minimization. 

In 1968 Kabir [11], has applied 	this method 

to estimate parameters of exponential components. 

The method of Bayesian estimation 

In 1976, 	Titterington [38] and in 1978, 	Smith and 

Makov [39] used 	this method in estimating parameters 

of a mixture of multivariate normal components. 

Difference methods 

Choi and Bu/gren [40] used the sum of squares of error 

function to measure the difference between the observed 

and theoretical cumulative distribution functions and, used 

it to estimate the parameters of mixtures in 1968, as a 

difference method. 
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