BIOGEOCHEMICAL CYCLING OF NUTRIENTS AND SELECTED METAL IONS IN THE PADAVIYA RESERVOIR

By

CHAMIKA SIRIWARDHANA

PhD 2019

BIOGEOCHEMICAL CYCLING OF NUTRIENTS AND SELECTED METAL IONS IN THE PADAVIYA RESERVOIR

By

CHAMIKA SIRIWARDHANA

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Doctor of Philosophy

Declaration of the candidate

The work described in this thesis was carried out by me under the supervision of Senior Prof. Sudantha Liyanage and Dr. Asitha Cooray and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma

Date	Signature of the candidate
Name of the candidate	Chamika Siriwardhana

Declaration of the supervisor

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Senior Professor Sudantha Liyanage,	Dr. Asitha Cooray
Project Supervisor	Project Supervisor
Department of Chemistry,	Senior Lecturer
Faculty of Applied Sciences,	Department of Chemistry,
University of Sri Jayewardenepura.	Faculty of Applied Sciences,
	University of Sri Jayewardenepur
Date:	Date:

Supervisors certification

We	certify	that	the	candidate	has	incorporated	all	corrections,	additions	and
amei	ndments	recom	ımen	ded by the	exam	iners to the fina	al ve	rsion of the Pl	hD. thesis.	

Senior Professor Sudantha Liyanage,	Dr. Asitha Cooray
Project Supervisor,	Project Supervisor
Department of Chemistry,	Senior Lecturer
Faculty of Applied Sciences,	Department of Chemistry,
University of Sri Jayewardenepura.	Faculty of Applied Sciences,
	University of Sri Jayewardenepura.
Date:	Date:

TABLE OF CONTENT

TABLE OF CONTENT
LIST OF TABLESvi
LIST OF FIGUREvii
LIST OF ABBREVIATIONSx
ACKNOWLEDGMENTxi
ABSTRACTxii
CHAPTER 1: INTRODUCTION1
1.1 General overview
1.2 Importance of water quality characterization
1.3 Inputs and fate of nutrients in reservoirs
1.3.1 Nitrogen in reservoirs
1.3.2 Phosphorus in reservoirs
1.3.3 Other contaminates
1.3.4 Oxygen demanding materials6
1.4 Sediments in lakes and reservoirs6
1.5 Reservoirs in Sri Lanka7
1.5.1 Padaviya reservoir8
1.6 Research objective and the importance of the study9
CHAPTER 2: Literature review
2.1 The water quality in Lakes and Reservoirs

2.2	Nu	trient over-enrichment.	.12
2.3	Ve	rtical stratification	.13
2.3	5.1	Dissolved oxygen.	.15
2.3	3.2	The importance of iron in the stratification of lakes and reservoirs	. 17
2.3	3.3	The importance of manganese in stratification.	. 17
2.4	Tot	tal metal content	.18
2.5	Ap	plication of environmental isotopes	.19
СНАРТ	ΓER :	3: Material and Methods	.20
3.1	Ma	iterials	.20
3.2	Site	e description	.20
3.3	Sar	nple collection.	.22
3.4	De	termination of physicochemical parameters.	.23
3.4	.1	Determination of physical parameters.	.23
3.5	De	termination of chemical parameters	.24
3.5	5.1	Water sample collection.	.24
3.5	5.2	Ammonia- Nitrogen (NH ₄ ⁺ - N)	.24
3.5	5.3	Nitrite- Nitrogen (NO ₂ -N).	.24
3.5	5.4	Nitrate- Nitrogen (NO ₃ ⁻ - N).	.24
3.5	5.5	Total phosphate (PO ₄ ³⁻)	.25
3.5	5.6	Dissolved oxygen (DO)	.25
3.5	5.7	Biochemical oxygen demand.	.25

3	.5.8	Chemical oxygen demand.	25
3.6	De	termination of the concentration of metal ions.	26
3	.6.1	Total Iron (Fe), Manganese (Mn), and Zinc (Zn).	26
3	.6.2	Arsenic (As), Cadmium (Cd)	26
3.7	Sta	ble isotope methodology.	26
3.8	Qu	ality assurance of physicochemical data	26
3.9	Da	ta analysis and interpretation	27
3.10	O Cal	lculation of WQI	27
3.11	l Sec	diment analysis	29
3	.11.1	Sample collection	29
3	.11.2	Sample preparation.	30
3	.11.3	Determination of total phosphorous content.	30
3	.11.4	Determination of total metal content	31
3	.11.5	Determination of total organic matter content.	31
3	.11.6	Determination of sediment pH.	32
3	.11.7	Identification of the minerals.	32
СНА	PTER 4	4: Results and Discussion	33
4.1	We	eather data	33
4.2	Tin	ne series of preliminary survey data of physico-chemical parameters	34
4.3	Vai	riation of the water depth during the study period	37
4.4	Ve	rtical distribution of water quality parameters.	39

4.4.1	Water temperature and conductivity
4.4.2	pH and oxidation-reduction potential (ORP)42
4.4.3	Dissolved oxygen (DO)44
4.4.4	Phosphate and inorganic N - species; nitrite, nitrate, and ammonia46
4.4.5	Biochemical oxygen demand (BOD) & Chemical oxygen demand (COD)
	50
4.4.6	Metal ion variation
4.4.7	Pearson correlation for surface water quality parameters
4.4.8	Principal component analysis of surface waters61
4.4.9	Pearson correlation for bottom water quality parameters bottom water .63
4.4.10	Principal component analysis (PCA) of bottom waters65
4.5 Spa	atial distribution of parameters
4.6 Ind	exing method for the assessment of pollution potential72
4.7 Sta	ble isotopes (¹⁸ O & ² H) in water75
4.8 Qu	ality of sediment77
4.8.1	Organic matter content, sediment pH77
4.8.2	Total phosphorus content78
4.8.3	Acid soluble metal content85
4.8.4	Mineral composition93
CHAPTER :	5: CONCLUSIONS98
CHAPTER	6: Recommendations 103

CHAPTER 7: REFERENCE

APPENDIX 1: List of publication

APPENDIX 2: Raw data

APPENDIX 3: Standard methods

LIST OF TABLES

Table 3.10.1 Index according to CCME WQI	. 29
Table 4.4.1 Correlation for Surface Water Quality Factors	60
Table 4.4.2 Principal Component Analysis of Surface Waters	61
Table 4.4.3 Correlation for bottom water quality parameters	64
Table 4.4.4 Principal Component Analysis of Bottom Waters	65
Table 4.6.1 CWQI for Surface and bottom water	. 73
Table 4.7.1 Isotope Composition in Surface and bottom water	. 76
Table 4.8.1 Pearson's correlation coefficient for sediment phosphate and TOM	. 78
Table 4.8.2 TP content in other lakes and their trophic state	. 82
Table 4.8.3 Mean concentrations (mg kg ⁻¹) of metals in surface sediments from	
Padaviya reservoir in comparison with standards	. 87
Table 4.8.4 The total metal concentrations in the outlet sample relative to the depth in	
the sediment	. 89
Table 4.8.5 The total metal concentrations in the middle sample relative to the depth i	n
the sediment	. 89
Table 4.8.6 Theoretical FTIR values for several minerals	. 94

LIST OF FIGURES

Figure 3.2.1 Orientation of Padaviya Reservoir	22
Figure 3.3.1 Sampling locations of Padaviya Reservoir. Main sampling stations	23
Figure 3.11.1 The locations of the sediment samples	30
Figure 4.1.1 Variation of precipitation.	33
Figure 4.1.2 Variation of average wind speed	34
Figure 4.2.1 Variation of temperature (a) pH (b) and conductivity (c) dissolved oxyg	gen
(d) during the preliminary survey with depth	35
Figure 4.2.2 Variation of ammonia (a) nitrite (b) nitrate (c) phosphate (d) during the	
preliminary survey with depth.	37
Figure 4.3.1 Variation of the depth of the water column	39
Figure 4.4.1 Vertical profiles of temperature (a) 2016 (b) 2017 (c) 2018	40
Figure 4.4.2 Vertical profiles of conductivity (a) 2016 (b) 2017 (c) 2018	41
Figure 4.4.3 Vertical profiles of pH (a) 2016 (b) 2017 (c) 2018	42
Figure 4.4.4 Vertical profiles of ORP (a) 2017 (b) 2018.	44
Figure 4.4.5 Vertical profiles of DO (a) 2016 (b) 2017 (c) 2018	45
Figure 4.4.6 Vertical concentration profiles of ammonia (a) 2016 (b) 2017 (c) 2018	47
Figure 4.4.7 Vertical concentration profiles of nitrite (a) 2016 (b) 2017 (c) 2018	47
Figure 4.4.8 Vertical concentration profiles of nitrate (a) 2016 (b) 2017 (c) 2018	48
Figure 4.4.9 Vertical concentration profiles of phosphate (a) 2016 (b) 2017 (c) 2018.	50
Figure 4.4.10 Vertical profiles of BOD (a)2017 (b) 2018	52
Figure 4.4.11 Vertical profiles of COD (a) 2017 (b) 2018	52
Figure 4.4.12 Box plots for selected total metal ions in the Surface and bottom water	of
Padaviya reservoir.	54

Figure 4.4.13 Vertical profiles of total Fe in water (a) 2017 (b) 2018
Figure 4.4.14 Vertica profiles of total Mn in water (a) 2017 (b) 2018
Figure 4.4.15 Vertical profiles of total Zn in water (a) 2017 (b) 2018 57
Figure 4.4.16 Vertical profiles of total Cd in water (a) 2017 (b) 2018
Figure 4.4.17 Vertical profiles of total As in water (a) 2017 (b) 2018
Figure 4.4.18 Component loadings for the first component and the second component
for surface water
Figure 4.4.19 Component loadings for the first component and the second component
for surface water
Figure 4.5.1 Variation of (A) Temperature (B) pH (C) Conductivity in surface sampling
sites of Padaviya
Figure 4.5.2 Variation of (D) ORP (E)Dissolved oxygen (F) in surface sampling sites of
Padaviya
Figure 4.5.3 Variation of (G) Nitrite (H) Nitrate (I) Total phosphate in surface sampling
sites of Padaviya
Figure 4.5.4 Cluster analysis dendrogram for surface sampling locations
Figure 4.5.5 Cluster analysis dendrogram for bottom sampling locations
Figure 4.7.1 Composition $\delta 2H$ against $\delta 18O$
Figure 4.8.1 pH and TOM Concentration of sediment samples
Figure 4.8.2 The concentration of sediment phosphate and TOM
Figure 4.8.3 Total phosphorus concentration of sediment samples
Figure 4.8.4 The relative distribution of total phosphorus at the outlet (a), middle (b) 80
Figure 4.8.5 Changes in sediment phosphorus profile
Figure 4.8.6 Slight turbid water in Padaviva reservoir

Figure 4.8.7 Surface distributions of metals in Padaviya reservoir sediment
Figure 4.8.8 Distribution pattern of zinc and cadmium in the middle and outlet sample9
Figure 4.8.9 Photograph of black color surface sediment layer with red color spots 92
Figure 4.8.10 Photograph of rock weathering around Padaviya reservoir area93
Figure 4.8.11 Typical FTIR spectra of A) L1 and B) L2 surface sample in the region
4000 and 500 cm ⁻¹ 95
Figure 4.8.12 Typical FTIR spectra of C) L3 and D) L4 E) L5 surface sample in the
region 4000 and 500 cm ⁻¹
Figure 4.8.13 Typical FTIR spectra of F) L1 surface sample and G) black - brown
materials for the region 4000 and 500 cm ⁻¹
Figure 5.1.1 The process of nutrient circulation in the reservoir

LIST OF ABBREVIATIONS

TP Total Phosphorus

TOM Total Organic Matter

UV Ultra Violet

AAS Atomic Absorption Spectroscopy

FAAS Flame Atomic Absorption Spectroscopy

GFAAS Graphite Furnace Atomic Absorption Spectroscopy

FTIR Fourier Transform Infrared Spectroscopy

ATR-FTIR Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

WQI Water Quality Index

SQG Numerical Sediment Quality Guidelines

TEC Threshold Effect Concentration

PEC Probable Effect Concentration

ACKNOWLEDGMENT

I would first like to thank my supervisors Prof. Sudantha Liyanage and Dr. Asitha Cooray of the Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura with great respect and honor for the guidance and encouragement throughout my research project. The door to Prof. Sudantha Liyanage and Dr. Asitha Cooray were always open whenever I ran into a trouble spot or had a question about my research or writing.

I would also like to extend my special thanks to the University Research Grants (ASP/06/RE/SCI/2015/26 and ASP/01/RE/SCI/2017/15 for financial support, Instrument Centre the Department of Chemistry, University of Sri Jayewardenepura for providing required facilities to carry out my research successfully.

Finally, I must express my very profound gratitude to my parents to my loving friends (especially our research assistant family) for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them.

BIOGEOCHEMICAL CYCLING OF NUTRIENTS AND SELECTED METAL IONS IN THE PADAVIYA RESERVOIR

Chamika Siriwardhana

ABSTRACT

Lakes, reservoirs, rivers, and aquifers are important freshwater sources. The anthropogenic influences on the natural environment, especially on freshwater resources, have increased dramatically during the last few decades. There are thousands of reservoirs in Sri Lanka, but only a handful of them have been extensively studied and monitored. Padaviya reservoir is a medium-sized reservoir in the Anuradhapura District. The reservoir is permanent, but subject to wide seasonal fluctuations in water level due to dry and wet climate conditions. Other than that, a minimal amount of information is known about the input and biogeochemical cycling of nutrients and trace elements. This study investigates the spatial and seasonal variations in water quality of Padaviya Reservoir by studying the inputs to the reservoir, vertical distribution and cycling of physical parameters and inorganic nitrogen species: ammonia, nitrite and nitrate, phosphate, dissolved oxygen, metal distribution, and stable isotopes. In addition, sediment total phosphorus content (TP), total organic matter content (TOM), sediment pH, acid-soluble metal content, and mineralogical composition of sediments were analyzed using standard methods during 2016 January to 2019 December. Sharp chemical gradients for ammonia, nitrite, nitrate, reactive phosphate and dissolved oxygen were observed between the surface and bottom waters of the reservoir, suggesting that it does not overturn completely. The maximum temperature difference between the surface and bottom waters of about 2 °C, which is not large enough to cause thermal stratification. The most probable reason for the stratification is extensive

photosynthesis at surface waters with the subsequent decomposition of organic material at the bottom, which enable bottom loading and affecting biogeochemical cycling. The anoxic, oxygen-depleted conditions in bottom layers support the loading of Fe, Mn, Zn, Cd from lake sediments except for Arsenic. Besides that, water quality index revealed that the Padaviya Reservoir surface water index value for drinking, aquatic, and recreation were recorded as poor, irrigation and livestock were good and excellent respectively. The stable isotope fluctuations were extremely stable, and data indicates intensive evaporation during sampling periods. Padaviya shows lack of vertical isotopic stratification despite the vertical distribution of temperature and a few chemical parameters. Sediment analysis results obtained from this study show that the average TP in the surface sediment was higher than the other eutrophic lakes and reservoirs in the world. There is no significant change of TP with the depth of the sediment; however, bottom sediments were slightly enriched with phosphate compared to surface sediments. Therefore, phosphate rich sediments can release phosphate back into the water column by dissolution and desorption and increasing the bioavailable pool of phosphate, may suggest the development of eutrophication processes during the wet season. The abundance of metals in sediment is Fe> Mg> Mn> Ca> Cr> Zn> As> Cd> Pb. The acidsoluble Fe concentration in the sediment was significantly higher than that of other metals. This richness can derive from weathering of surrounding rocks carried by upstream rivers. These results indicate that Padaviya sediments have a moderate level of organic matter content and slightly acidic medium. The ATR-FTIR spectra indicated wave numbers closely match with montmorillonite, kaolinite, muscovite, and quartz minerals.

Keywords - Padaviya Reservoir, Clinograde, Chemical gradients, Nutrients, Anoxic